Probing The Axion-Electron and Axion-Photon Couplings with the QUAX Haloscopes

Lab @INFN-LNI.

C. Braggio (this presentation), G. Carugno (lead), A. Ortolan, G. Ruoso A. Lombardi, R. Pengo, L. Taffarello PhD+PostDoc (2017-2020): N. Crescini PhD (2018-2020): R. Di Vora

1 mW at 100 mK

Lab @INFN-LNF

C. Gatti, D. Alesini, D. Babusci, D. Di Gioacchino, C.Ligi, G. Maccarrone, D. Morricciani, S. Tocci *PhD* (2018-2020): A. Rettaroli

@INFN-**Salerno** U. Gambardella, G. Iannone, C. Severino, D. D'Agostino @INFN**-Trento**

HALOSCOPE - resonant search for axion DM in the Galactic halo

- original proposal by P. Sikivie (1983)
- − search for axions as cold dark matter constituent: SHM from $Λ_{CDM}$, local DM density ρ → signal is a **line** with 10^{-6} relative width in the energy(→ frequency) spectrum → + sharp (10^{-11}) components due to non-thermalized
- an axion may interact with a strong \vec{B} field to produce a photon of a specific frequency ($\rightarrow m_a$)

HALOSCOPE - resonant search for axion DM in the Galactic halo

- if axions are *almost monochromatic* then their conversion to detectable particles (photons) can be accomplished using high-Q microwave cavities.

$$-\omega_{\text{TM0}nl} = \sqrt{\left(\frac{\epsilon_n}{r}\right)^2 + \left(\frac{l\pi}{h}\right)}$$

 TM_{0nl} are the cavity modes that couple with the axion

- resonant amplification in $[m_a \pm m_a/Q]$
- data in thin slices of parameter space; typically $Q < Q_a \sim 1/\sigma_v^2 \sim 10^6$
- − signal power $P_{a \to \gamma}$ is model-dependent

$$P_{a \to \gamma} \propto (B^2 V Q) (g_{a\gamma}^2 \frac{\rho}{m_a})$$

exceedingly tiny ($\sim 10^{-23}\,\mathrm{W}$)

"The last signal ever received from the 7.5 W transmitter aboard Pioneer 10 in 2002, then 12.1 billion kilometers from Earth, was a prodigious 2.5×10^{-21} W. And unlike with the axion, physicists knew its frequency!"

HALOSCOPES: 2020 RESULTS

[&]quot;Roberto and I spent a few months cooking up this theory, and now the experimentalists have spent 40 years looking for it"

HALOSCOPES: 2020 RESULTS

[&]quot;Roberto and I spent a few months cooking up this theory, and now the experimentalists have spent 40 years looking for it"
H. Quinn

HALOSCOPES: DEMONSTRATORS AND NEW PROPOSALS

only a selection...

OUAX - OUAERERE AXIONS

Wind

Haloscopes

00000000

Detection of cosmological axions through their **coupling to electrons** or **photons**

the FMR haloscope

the axion DM cloud acts as an **effective RF magnetic field** on the electron spin exciting **magnetic transitions** in a magnetized sample $(YIG) \rightarrow RF$ **photons**

$$P_{\rm out} = \frac{P_{\rm in}}{2} = 8 \times 10^{-26} \left(\frac{m_a}{2 \cdot 10^{-4} \, \rm eV}\right)^3 \left(\frac{V_s}{1 \ \rm liter}\right) \left(\frac{n_S}{10^{28} / {\rm m}^3}\right) \left(\frac{\tau_{\rm min}}{10^{-6} \, \rm s}\right) \, {\rm W},$$

PHOTON COUPLING – **OUAX** aγ

high frequency range (8.5 - 11) GHz

DM axions are converted into **RF photons** inside a **resonant cavity** immersed in a **strong magnetic field**

$$\begin{split} P_{\rm ax} &= 3.3 \cdot 10^{-24} \, \mathrm{W} \left(\frac{V_{\rm eff}^{\rm Sa}}{2.3 \cdot 10^{-5} \, \mathrm{m}^3} \right) \left(\frac{B}{8 \, \mathrm{T}} \right)^2 \times \\ &\left(\frac{g_{\gamma}}{-0.97} \right)^2 \left(\frac{\rho_a}{0.45 \, {\rm GeV \, cm}^{-3}} \right) \left(\frac{f}{13.5 \, {\rm GHz}} \right) \left(\frac{Q_L}{145 \, 000} \right) \end{split}$$

AXIONS AND MAGNONS

AXIONS AND MAGNONS

$$\mathcal{L}_a = f_a^{-1} g_{aij} \bar{\psi}_i \gamma^\mu \gamma^5 \psi_j \partial_\mu a$$

DFSZ axion model coupling with non relativistic ($v/c \ll 1$) electron: equation of motion reduces to

$$i\hbar\frac{\partial\varphi}{\partial t} = \left[-\frac{\hbar^2}{2m}\nabla^2 - \frac{g_p\hbar}{2m}\boldsymbol{\sigma}\cdot\boldsymbol{\nabla}a\right]\varphi$$

The interaction term is in the form of a spin—magnetic field interaction with ∇a playing the role of a oscillating effective magnetic field

$$-\frac{g_p \hbar}{2m} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} a \equiv -2\frac{e \hbar}{2m} \boldsymbol{\sigma} \cdot \begin{pmatrix} g_p \\ 2e \end{pmatrix} \boldsymbol{\nabla} a$$

$$-2\mu_B \boldsymbol{\sigma},$$

$$\mu_B \text{ the Bohr magneton} \qquad B_a \equiv \frac{g_p}{2e} \boldsymbol{\nabla} a$$

OUAX: AXION DETECTION BY RESONANT INTERACTION WITH e^- SPIN

The interaction term has the form of a spin—magnetic field interaction with ∇a playing the role of a

oscillating effective magnetic field

$$\begin{split} \frac{\omega_a}{2\pi} &= f_a = \frac{m_a c^2}{h} \simeq 14 \left(\frac{m_a}{58.5\,\mu\text{eV}}\right) \text{GHz}, \\ B_a &= \frac{g_p}{2e} \boldsymbol{\nabla} a \\ &= 7 \times 10^{-23} \left(\frac{\rho_{\text{dm}}}{0.45\,\text{GeV}}\right)^{\frac{1}{2}} \left(\frac{m_a}{58.5\,\mu\text{eV}}\right) \left(\frac{\nu_a}{220\,\text{km/s}}\right) \text{T} \end{split}$$

Haloscopes

EPR/FMR technique

- material magnetized by a static magnetic field $\mathbf{B} \perp \mathbf{axion}$ wind
- \rightarrow DM sensing when the Larmor frequency of the electrons matches the axion frequency f_a .
 - $-B_a$ deposits in the sample the power P_a
- $-P_a$ gives rise to RF/ μ wave radiation $\stackrel{...}{\longleftarrow}$ axion signal

Haloscopes

THE EXPERIMENTAL TECHNIQUE: ELECTRON SPIN RESONANCE

Magnetic resonance (ESR/FMR) arises when energy levels of a quantized system of electronic moments are Zeeman split (\iff the magnetic system is placed in a uniform magnetic field B_0) and the system absorbs EM radiation in the microwave range at the Larmor frequency (ν_L).

An experimental geometry with **crossed magnetic fields** is needed:

- \blacktriangleright B_0 along $z \rightarrow \nu_L = \gamma B_0$, $\gamma = 28 \, \text{GHz/T}$
- ▶ a microwave field B_1 is applied to the xy plane sum of two counter-rotating fields $2A\cos\omega t = A(e^{i\omega t} + e^{-i\omega t})$
- ightharpoonup no resonance occurs when the AC field is parallel to B_0
- ▶ $\mathbf{M} \propto n_s$ is the magnetization density

BLOCH EQUATIONS - SPIN PRECESSION

The evolution of the electron spin under the influence of external fields is described by a set of coupled non-linear equations, modified to take into account radiation damping.

MATERIAL IN FREE SPACE

$$\begin{array}{lcl} \frac{dM_x}{dt} & = & \gamma (\mathbf{M} \times \mathbf{B})_x - \frac{M_x}{\tau_2} - \frac{M_x M_z}{M_0 \tau_r} \\ \frac{dM_y}{dt} & = & \gamma (\mathbf{M} \times \mathbf{B})_y - \frac{M_y}{\tau_2} - \frac{M_y M_z}{M_0 \tau_r} \\ \frac{dM_z}{dt} & = & \gamma (\mathbf{M} \times \mathbf{B})_z - \frac{M_0 - M_z}{\tau_1} - \frac{M_x^2 + M_y^2}{M_0 \tau_r} \end{array}$$

- τ_r radiation damping
- τ_1 longitudinal (spin-lattice) M_z
- $au_2 < au_1$ transverse (spin-spin) $M_{x,y}$

AXION DETECTION VIA ESR

The axion wind substitutes the transverse field B1, inducing a **variable magnetization component** in the magnetic sample in the *xy* plane

$$M_a(t) = \gamma \mu_B B_a n_s \tau_{\min} \cos(\omega_a t)$$

 τ_{\min} is the shortest coherence time among:

- axion wind coherence time $\tau_{\nabla a}$
- magnetic material relaxation time au_2
- radiation damping τ_r

 n_s material spin density, μ_B is the Bohr magneton

Magnetized material with volume V_s will absorb energy from the axion wind at a rate

$$P_{\rm in} = \mu_0 \mathbf{H} \cdot \frac{d\mathbf{M}}{dt} = B_a \frac{dM_a}{dt} V_s = \gamma \mu_B n_s \omega_a B_a^2 \tau_{\rm min} V_s$$

that will be re-emitted as electromagnetic radiation

RADIATION DAMPING ISSUE

at high frequency ($\gtrsim 10\,\mathrm{GHz}$) the signal is suppressed via τ_r term in free space ($\tau_r \ll \tau_2, \tau_{\nabla a}$)

- magnetized material inside a microwave cavity
- strong coupling regime: two separate resonances with width $(\tau_c^{-1} + \tau_2^{-1})$
- when the $\nu_L = \nu_c$ the system hybridizes at maximum coupling
- axion detection is accomplished in one of the *hybrid photon-magnon modes*

EXPECTED SIGNAL

EXPERIMENTAL CHALLENGES

- $\circ~$ magnetized material with spin density 2 $\times~10^{28}~\rm{m^{-3}}$ and FMR linewidth \sim 150 kHz ($\tau_2\sim2~\mu s$)
- -~ necessary magnetized sample volume $\sim 100\,\text{cm}^3$ to be hosted in $\sim~50\,\text{GHz}$ frequency cavities
- $\bullet \sim 10^6$ Q-factor cavities in multi-Tesla magnetic field
- ppm level uniformity and high stability of the 2 T magnetic field
- signal detection beyond SQL with linear amplifiers ⇒ single-photon microwave detectors
- o 100 mK working temperature of the complete apparatus
- tunability with B field

EXPERIMENTAL CHALLENGES - MAGNETIC MATERIAL

 \circ magnetized material with spin density 2 \times 10²⁸ m⁻³ and FMR linewidth \sim 150 kHz ($\tau_2 \sim 2 \,\mu$ s) tested several magnetic materials \Longrightarrow low hybridization or too large linewidth

YIG – Yttrium Iron Garnet (Y₃Fe₅O₁₂)

- a ferrimagnetic synthetic garnet
- commercially available spheres (max 2 mm-diameter), linewidth not sufficiently narrow

We have successfully developed a procedure to get **high quality YIG spheres**:

- ★ acquire high purity (≤ 1ppm RE) YIG single crystals of cm³ size from manufacturers
- * large crystal is cut into cubes of 2.5 mm sides
- * grinding into 2 mm-diameter spheres using SiC abrasive paper of different grit size
- * polishing with Alumina based suspension

EXPERIMENTAL CHALLENGES - MAGNETIC FIELD UNIFORMITY

• Homogeneity at the ppm level is required to avoid inhomogeneous line broadening of the FMR resonance

20 ppm over 1 cm, NbTi Superconducting coil (solution from private company)

QUAX DEMONSTRATOR - 2018 LHe results

five 1-mm YIG spheres (V_s =2.6 mm³) HEMT low noise cryogenic amplifier T_n = 10 K $T_c + T_n$ = 15 K $P_{\rm in} = (-4.6 \pm 22.2) \times 10^{-23}$ W

minimum measured value of $g_{aee} = 4.9 \times 10^{-10} \iff B_a \le 2.6 \times 10^{-17} \text{ T}$ N. Crescini, et al., Eur. Phys. J. C (2018) 78:703

QUAX LIMIT ON AXION-ELECTRON COUPLING

MODELLING THE SYSTEM AND FREQUENCY TUNING

- new cavity at 10.7 GHz to match the JPC amplifier working frequency
- 10 spheres with max diameter 2.1 mm (selected out of about 20)

increasing the material

⇒ need for *improving hybridization control*

for the FMR haloscope hybrid system a model with 2 cavity modes + 2 magnetic modes works

- $\rightarrow 10^{21}$ spins,
- → coherent response by 10 spheres,
- → material relaxation time 84 ns
- → hybrid mode 1 is isolated, use it to search for axion-induced signals
- \rightarrow by changing B_0 , axion mass scan along the dashed line

REMOVING THE MAGNETIC MATERIAL FROM THE CAVITY: QUAX a- γ

target: high frequency range (8.5 - 11 GHz)

- + stronger magnetic field (8 T+ correction magnet to reduce stray field on electronics)
- ✓ high-Q cavity in intense B-fields
- \checkmark low noise receiver, del fridge operation

Strengths:

high-Q *hybrid cavities* - NbTi sputtered on copper *dielectric resonators*

HIGH Q DIELECTRIC CAVITIES

normal conducting, Q_0 independent of **B**

QUAX a- γ limit on axion-photon coupling

- copper cavity with conical end-caps
- two halves kept separated by lower conductivity material
- NbTi sputtering in central cylinder (D. Alesini)

NEW! first test with JPA in 2020 reached a sensitivity of $3 \times KSVZ$ in a sharp window $\rightarrow arXiv:2012.09498$

PHYS. REV. D 99, 101101 (2019)

QUAX COLLABORATION ROADMAP (2021-2025)

- ightarrow DM axion search (axion-photon coupling) by scanning **yet unexplored mass values** in the (8.5 11) GHz range
- → LNL and LNF INFN laboratories will work in synergy, operating in different mass ranges and using different low noise amplifiers and single microwave photon detectors.
- \rightarrow strengthening collaborations with international groups for integration of
 - 1. state-of-the-art itinerant microwave photon counters (E. Flurin, Saclay)
 - 2. traveling wave JPA (N. Roche, Grenoble) in the receiver chain
 - 3. high-Q cavities (SQMS, Superconducting Quantum Materials and Systems center led by Fermilab)
- → [R&D] increase the signal power in the **spin-based haloscope**. Such a detector could be crucial for the characterization of the axion models in case of discovery.

QUAX COLLABORATION ROADMAP (2021-2025)

S. Lee et al, PRL 124, 101802 (2020) m_a (eV)

Performance for KSVZ model at 95% c.l. with $N_A=0.5$		
Noise Temperature	0.43 K	0.5 K
Single scan time	3100 s	69 s
Scan speed	18 MHz/day	40 MHz/day
Performance for KSVZ model at 95% c.l. with $N_A=1.5$		
Noise Temperature	0.86 K	1 K
Single scan time	12500 s	280 s
Scan speed	4.5 MHz/day	10 MHz/day

	LNF	LNL
Magnetic field	9 T	14 T
Magnet length	40 cm	50 cm
Magnet inner diameter	9 cm	12 cm
Frequency range	8.5 - 10 GHz	9.5 - 11 GHz
Cavity type	Hybrid SC	Dielectric
Scanning type	Inserted rod	Mobile cylinder
Number of cavities	7	1
Cavity length	0.3 m	0.4 m
Cavity diameter	25.5 mm	58 mm
Cavity mode	TM010	pseudoTM030
Single volume	$1.5 \cdot 10^{-4} \text{ m}^3$	$1.5 \cdot 10^{-4} \text{ m}^3$
Total volume	$7 \otimes 0.15$ liters	0.15 liters
Q_0	300 000	1 000 000
Single scan bandwidth	630 kHz	30 kHz
Axion power	$7\otimes 1.2\cdot 10^{-23}~\mathrm{W}$	$0.99 \cdot 10^{-22} \text{ W}$
Preamplifier	TWJPA/INRIM	DJJAA/Grenoble
Operating temperature	30 mK	30 mK